TY - BOOK AU - Sadhukhan,Jhuma AU - Ng,Kok Siew AU - Hernandez,Elias Martinez TI - Biorefineries and chemical processes: design, integration and sustainability analysis SN - 9781118698136 AV - TP155.2.E58 U1 - 662/.88 23 PY - 2014/// CY - Chichester, West Sussex, Hoboken, NJ PB - Wiley KW - Biomass KW - Refining KW - Biomass chemicals KW - Technological innovations KW - Biomass chemicals industry KW - Biomass energy industries KW - Environmental aspects KW - Biomasse KW - Affinage KW - Produits chimiques de la biomasse KW - Innovations KW - Industrie KW - Aspect de l'environnement KW - SCIENCE KW - Chemistry KW - General KW - bisacsh KW - Electronic books N1 - Includes index; Includes bibliographical references and index; Biorefineries and Chemical Processes; Contents; Preface; Part I: Introduction; Part II: Tools; Part III: Process Synthesis and Design; Part IV: Biorefinery Systems; Part V: Interacting Systems of Biorefineries (available on the companion website); Case Studies (available on the companion website); Acknowledgments; About the Authors; Companion Website; Nomenclature; Part I Introduction; 1 Introduction; 1.1 Fundamentals of the Biorefinery Concept; 1.1.1 Biorefinery Principles; 1.1.2 Biorefinery Types and Development; 1.2 Biorefinery Features and Nomenclature; 1.3 Biorefinery Feedstock: Biomass; 1.3.1 Chemical Nature of Biorefinery Feedstocks1.3.2 Feedstock Characterization; 1.4 Processes and Platforms; 1.5 Biorefinery Products; 1.6 Optimization of Preprocessing and Fractionation for Bio Based Manufacturing; 1.6.1 Background of Lignin; 1.7 Electrochemistry Application in Biorefineries; 1.8 Introduction to Energy and Water Systems; 1.9 Evaluating Biorefinery Performances; 1.9.1 Performance Indicators; 1.9.2 Life Cycle Analysis; 1.10 Chapters; 1.11 Summary; References; Part II Tools; 2 Economic Analysis; 2.1 Introduction; 2.2 General Economic Concepts and Terminology; 2.2.1 Capital Cost and Battery Limits2.2.2 Cost Index; 2.2.3 Economies of Scale; 2.2.4 Operating Cost; 2.2.5 Cash Flows; 2.2.6 Time Value of Money; 2.2.7 Discounted Cash Flow Analysis and Net Present Value; 2.2.8 Profitability Analysis; 2.2.9 Learning Effect; 2.3 Methodology; 2.3.1 Capital Cost Estimation; 2.3.2 Profitability Analysis; 2.4 Cost Estimation and Correlation; 2.4.1 Capital Cost; 2.4.2 Operating Cost; 2.5 Summary; 2.6 Exercises; References; 3 Heat Integration and Utility System Design; 3.1 Introduction; 3.2 Process Integration; 3.3 Analysis of Heat Exchanger Network Using Pinch Technology3.3.1 Data Extraction; 3.3.2 Construction of Temperature-Enthalpy Profiles; 3.3.3 Application of the Graphical Approach for Energy Recovery; 3.4 Utility System; 3.4.1 Components in Utility System; 3.5 Conceptual Design of Heat Recovery System for Cogeneration; 3.5.1 Conventional Approach; 3.5.2 Heuristic Based Approach; 3.6 Summary; References; 4 Life Cycle Assessment; 4.1 Life Cycle Thinking; 4.2 Policy Context; 4.3 Life Cycle Assessment (LCA); 4.4 LCA: Goal and Scope Definition; 4.5 LCA: Inventory Analysis; 4.6 LCA: Impact Assessment4.6.1 Global Warming Potential; 4.6.2 Land Use; 4.6.3 Resource Use; 4.6.4 Ozone Layer Depletion; 4.6.5 Acidification Potential; 4.6.6 Photochemical Oxidant Creation Potential; 4.6.7 Aquatic Ecotoxicity; 4.6.8 Eutrophication Potential; 4.6.9 Biodiversity; 4.7 LCA: Interpretation; 4.7.1 Stand-Alone LCA; 4.7.2 Accounting LCA; 4.7.3 Change Oriented LCA; 4.7.4 Allocation Method; 4.8 LCIA Methods; 4.9 Future R & D Needs; References; 5 Data Uncertainty and Multicriteria Analyses; 5.1 Data Uncertainty Analysis; 5.1.1 Dominance Analysis; 5.1.2 Contribution Analysis; gsg N2 - "This book is for educators, postgraduate and final year undergraduate students in chemical engineering, environmental and biochemical engineering and applied science subjects, as well as researchers and practitioners in industry"-- UR - http://dx.doi.org/10.1002/9781118698129 ER -