Introduction to stochastic analysis : (Record no. 20177)

MARC details
000 -LEADER
fixed length control field 05154cam a2200565Mi 4500
001 - CONTROL NUMBER
control field ocn828298898
003 - CONTROL NUMBER IDENTIFIER
control field OCoLC
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230823095530.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS--GENERAL INFORMATION
fixed length control field m o d
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu|||unuuu
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 130223s2013 enk o 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EBLCP
Language of cataloging eng
Description conventions pn
Transcribing agency EBLCP
Modifying agency YDXCP
-- DG1
-- DEBSZ
-- OCLCQ
-- OCLCA
-- OCLCF
-- OCLCQ
-- DEBBG
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9781118603338
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 1118603338
Qualifying information (electronic bk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9781118603246
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 1118603249
029 1# - (OCLC)
OCLC library identifier DEBSZ
System control number 39748044X
029 1# - (OCLC)
OCLC library identifier DEBSZ
System control number 431339252
029 1# - (OCLC)
OCLC library identifier DEBSZ
System control number 449346781
029 1# - (OCLC)
OCLC library identifier NZ1
System control number 15916046
029 1# - (OCLC)
OCLC library identifier DEBBG
System control number BV043395465
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)828298898
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA274.2 .M33 2011
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 519.2/2
-- 519.22
049 ## - LOCAL HOLDINGS (OCLC)
Holding library MAIN
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Mackevičius, Vigirdas.
245 10 - TITLE STATEMENT
Title Introduction to stochastic analysis :
Remainder of title integrals and differential equations /
Statement of responsibility, etc Vigirdas Mackevičius.
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc London :
Name of publisher, distributor, etc Wiley,
Date of publication, distribution, etc 2013.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (278 pages).
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
490 1# - SERIES STATEMENT
Series statement ISTE
588 0# -
-- Print version record.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Cover; Title Page; Copyright Page; Table of Contents; Preface; Notation; Chapter 1. Introduction: Basic Notions of Probability Theory; 1.1. Probability space; 1.2. Random variables; 1.3. Characteristics of a random variable; 1.4. Types of random variables; 1.5. Conditional probabilities and distributions; 1.6. Conditional expectations as random variables; 1.7. Independent events and random variables; 1.8. Convergence of random variables; 1.9. Cauchy criterion; 1.10. Series of random variables; 1.11. Lebesgue theorem; 1.12. Fubini theorem; 1.13. Random processes; 1.14. Kolmogorov theorem.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note Chapter 2. Brownian Motion2.1. Definition and properties; 2.2. White noise and Brownian motion; 2.3. Exercises; Chapter 3. Stochastic Models with Brownian Motion and White Noise; 3.1. Discrete time; 3.2. Continuous time; Chapter 4. Stochastic Integral with Respect to Brownian Motion; 4.1. Preliminaries. Stochastic integral with respect to a step process; 4.2. Definition and properties; 4.3. Extensions; 4.4. Exercises; Chapter 5. Itô's Formula; 5.1. Exercises; Chapter 6. Stochastic Differential Equations; 6.1. Exercises; Chapter 7. Itô Processes; 7.1. Exercises.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note Chapter 8. Stratonovich Integral and Equations8.1. Exercises; Chapter 9. Linear Stochastic Differential Equations; 9.1. Explicit solution of a linear SDE; 9.2. Expectation and variance of a solution of an LSDE; 9.3. Other explicitly solvable equations; 9.4. Stochastic exponential equation; 9.5. Exercises; Chapter 10. Solutions of SDEs as Markov Diffusion Processes; 10.1. Introduction; 10.2. Backward and forward Kolmogorov equations; 10.3. Stationary density of a diffusion process; 10.4. Exercises; Chapter 11. Examples; 11.1. Additive noise: Langevin equation.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 11.2. Additive noise: general case11.3. Multiplicative noise: general remarks; 11.4. Multiplicative noise: Verhulst equation; 11.5. Multiplicative noise: genetic model; Chapter 12. Example in Finance: Black-Scholes Model; 12.1. Introduction: what is an option?; 12.2. Self-financing strategies; 12.2.1. Portfolio and its trading strategy; 12.2.2. Self-financing strategies; 12.2.3. Stock discount; 12.3. Option pricing problem: the Black-Scholes model; 12.4. Black-Scholes formula; 12.5. Risk-neutral probabilities: alternative derivation of Black-Scholes formula; 12.6. Exercises.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note Chapter 13. Numerical Solution of Stochastic Differential Equations13.1. Memories of approximations of ordinary differential equations; 13.2. Euler approximation; 13.3. Higher-order strong approximations; 13.4. First-order weak approximations; 13.5. Higher-order weak approximations; 13.6. Example: Milstein-type approximations; 13.7. Example: Runge-Kutta approximations; 13.8. Exercises; Chapter 14. Elements of Multidimensional Stochastic Analysis; 14.1. Multidimensional Brownian motion; 14.2. Itô's formula for a multidimensional Brownian motion; 14.3. Stochastic differential equations.
500 ## - GENERAL NOTE
General note 14.4. Itô processes.
520 ## - SUMMARY, ETC.
Summary, etc This is an introduction to stochastic integration and stochastic differential equations written in an understandable way for a wide audience, from students of mathematics to practitioners in biology, chemistry, physics, and finances. The presentation is based on the naïve stochastic integration, rather than on abstract theories of measure and stochastic processes. The proofs are rather simple for practitioners and, at the same time, rather rigorous for mathematicians.
526 ## - STUDY PROGRAM INFORMATION NOTE
Department Life Sciences
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Stochastic analysis.
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Stochastic analysis.
Source of heading or term fast
-- (OCoLC)fst01133499
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text Print version:
Main entry heading Mackevicius, Vigirdas.
Title Introduction to Stochastic Analysis : Integrals and Differential Equations.
Place, publisher, and date of publication London : Wiley, ©2013
International Standard Book Number 9781848213111
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title ISTE.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="http://dx.doi.org/10.1002/9781118603338">http://dx.doi.org/10.1002/9781118603338</a>
Public note Wiley Online Library
994 ## -
-- 92
-- DG1

No items available.