Python data science handbook : (Record no. 57696)

MARC details
000 -LEADER
fixed length control field 04084nam\a2200337\a\4500
001 - CONTROL NUMBER
control field 57696
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20260208152706.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 230831t20222023caua bf 001 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9789355422552
Qualifying information paperback
040 ## - CATALOGING SOURCE
Original cataloging agency UKMGB
Language of cataloging eng
Description conventions rda
Transcribing agency UKMGB
Modifying agency OCLCF
-- IG$
-- UKMGB
-- GPRCL
-- OQX
-- IWA
-- YDX
-- OCL
-- BD-DhIUB
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.312
Edition number 23
Item number V224p
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name VanderPlas, Jake
9 (RLIN) 7113
245 10 - TITLE STATEMENT
Title Python data science handbook :
Remainder of title essential tools for working with data /
Statement of responsibility, etc Jake VanderPlas.
250 ## - EDITION STATEMENT
Edition statement Second edition.
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc India:
Name of publisher, distributor, etc Shroff Publishers and Distributors Pvt.Ltd.,
Date of publication, distribution, etc 2023
300 ## - PHYSICAL DESCRIPTION
Extent xxiv, 563 pages :
Other physical details illustrations ;
Dimensions 24 cm
500 ## - GENERAL NOTE
General note Previous edition: 2016.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Part I: Jupyter: Beyond normal Python -- 1. Getting started in in IPython and Jupyter -- 2. Enhanced interactive features -- 3. Debugging and profiling -- Part II: Introduction to NumPy -- 4. Understanding data types in Python -- 5. The basics of NumPy arrays -- 6. Computation on NumPy arrays: Universal functions -- 7. Aggregations: min, max, and everything in between -- 8. Computation on arrays: broadcasting -- 9. Comparisons, masks, and boolean logic -- 10. Fancy indexing -- 11. Sorting arrays -- 12. Structured data: NumPy's structured arrays -- Part III: Data manipulation with Pandas -- 13. Introducing Pandas objects -- 14. Data indexing and selection -- 15. Operating on data in Pandas -- 16. Handling missing data -- 17. Hierarchial indexing -- 18. Combining datasets: concat and append -- 19. Combining datasets: merge and join -- 20. Aggregation and grouping -- 21. Pivot tables -- 22. Vectorized string operations -- 23. Working with time series -- 24. High-performace Pandas: eval and query -- Part IV: Visualization with Matplotlib -- 25. General Matplotlib tips -- 26. Simple line plots -- 27. Simple scatter plots -- 28. Density and contour plots -- 29. Customizing plot legends -- 30. Customizing colorbars -- 31. Multiple subplots -- 32. Text and annitatuin -- 33. Customizing ticks -- 34. Customizing Matplotlib: Configurations and stylesheets -- 35. Three-dimensional plottin in Matplotlib -- 36. Visualization with Seaborn -- Part V: Machine learning -- 37. What is machine learning? -- 38. Introducing Scitit-Learn -- 39. Hyperparameters and model validation -- 40. Feature engineering -- 41. In depth: Naive beyes classification -- 42. In depth: Linear regression -- 43> In depth: Support vector machines -- 44. In depth: Decision trees and random forests -- 45> In depth: Principal component analysis -- 46> In depth: Manifold learning -- 47. In depth: k-means clustering -- 48. In depth: Gaussian mixture models -- 49. In depth: Kernel density estimation -- 50. Application: a face detection pipeline.
520 ## - SUMMARY, ETC.
Summary, etc "Python is a first-class tool for many researchers, primarily because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the new edition of Python Data Science Handbook do you get them all--IPython, NumPy, pandas, Matplotlib, scikit-learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find the second edition of this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python."--Publisher marketing.
526 ## - STUDY PROGRAM INFORMATION NOTE
School name School of engineering, Technology &Sciences
Department Physical Science
Shelving Location Reference Stacks
541 ## - IMMEDIATE SOURCE OF ACQUISITION NOTE
Source of acquisition Risaam
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Data mining
Form subdivision Handbooks, manuals, etc.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Python (Computer program language)
Form subdivision Handbooks, manuals, etc.
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Data mining.
Source of heading or term fast
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Python (Computer program language)
Source of heading or term fast
655 #7 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Handbooks and manuals
Source of term fast
655 #7 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Handbooks and manuals.
Source of term lcgft
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Books
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Shelving location Date acquired Source of acquisition Cost, normal purchase price Serial Enumeration / chronology Total Checkouts Full call number Barcode Date last seen Copy number Cost, replacement price Price effective from Koha item type
Withdrawn after missing   Dewey Decimal Classification   Not For Loan Library, Independent University, Bangladesh (IUB) Library, Independent University, Bangladesh (IUB) Reference Stacks 20/01/2026 Purchase 2600.00 2023   006.312 V224p 029546 08/02/2026 01 5200.00 20/01/2026 Books
Withdrawn after missing   Dewey Decimal Classification   Not For Loan Library, Independent University, Bangladesh (IUB) Library, Independent University, Bangladesh (IUB) Reference Stacks 20/01/2026 Purchase 2600.00 2023   006.312 V224p 029547 08/02/2026 02 5200.00 20/01/2026 Books