Amazon cover image
Image from Amazon.com

Biorefineries and chemical processes : design, integration and sustainability analysis / Jhuma Sadhukhan, Kok Siew Ng, Elias Martinez Hernandez.

By: Contributor(s): Material type: TextTextPublisher: Chichester, West Sussex ; Hoboken, NJ : Wiley, 2014Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118698136
  • 1118698134
  • 9781118698167
  • 1118698169
  • 9781118698129
  • 1118698126
  • 1119990866
  • 9781119990864
  • 9781322060576
  • 1322060576
Subject(s): Genre/Form: Additional physical formats: Print version:: Biorefineries and chemical processes.DDC classification:
  • 662/.88 23
LOC classification:
  • TP155.2.E58
Other classification:
  • SCI013000
Online resources:
Contents:
Biorefineries and Chemical Processes; Contents; Preface; Part I: Introduction; Part II: Tools; Part III: Process Synthesis and Design; Part IV: Biorefinery Systems; Part V: Interacting Systems of Biorefineries (available on the companion website); Case Studies (available on the companion website); Acknowledgments; About the Authors; Companion Website; Nomenclature; Part I Introduction; 1 Introduction; 1.1 Fundamentals of the Biorefinery Concept; 1.1.1 Biorefinery Principles; 1.1.2 Biorefinery Types and Development; 1.2 Biorefinery Features and Nomenclature; 1.3 Biorefinery Feedstock: Biomass.
1.3.1 Chemical Nature of Biorefinery Feedstocks1.3.2 Feedstock Characterization; 1.4 Processes and Platforms; 1.5 Biorefinery Products; 1.6 Optimization of Preprocessing and Fractionation for Bio Based Manufacturing; 1.6.1 Background of Lignin; 1.7 Electrochemistry Application in Biorefineries; 1.8 Introduction to Energy and Water Systems; 1.9 Evaluating Biorefinery Performances; 1.9.1 Performance Indicators; 1.9.2 Life Cycle Analysis; 1.10 Chapters; 1.11 Summary; References; Part II Tools; 2 Economic Analysis; 2.1 Introduction; 2.2 General Economic Concepts and Terminology.
2.2.1 Capital Cost and Battery Limits2.2.2 Cost Index; 2.2.3 Economies of Scale; 2.2.4 Operating Cost; 2.2.5 Cash Flows; 2.2.6 Time Value of Money; 2.2.7 Discounted Cash Flow Analysis and Net Present Value; 2.2.8 Profitability Analysis; 2.2.9 Learning Effect; 2.3 Methodology; 2.3.1 Capital Cost Estimation; 2.3.2 Profitability Analysis; 2.4 Cost Estimation and Correlation; 2.4.1 Capital Cost; 2.4.2 Operating Cost; 2.5 Summary; 2.6 Exercises; References; 3 Heat Integration and Utility System Design; 3.1 Introduction; 3.2 Process Integration.
3.3 Analysis of Heat Exchanger Network Using Pinch Technology3.3.1 Data Extraction; 3.3.2 Construction of Temperature-Enthalpy Profiles; 3.3.3 Application of the Graphical Approach for Energy Recovery; 3.4 Utility System; 3.4.1 Components in Utility System; 3.5 Conceptual Design of Heat Recovery System for Cogeneration; 3.5.1 Conventional Approach; 3.5.2 Heuristic Based Approach; 3.6 Summary; References; 4 Life Cycle Assessment; 4.1 Life Cycle Thinking; 4.2 Policy Context; 4.3 Life Cycle Assessment (LCA); 4.4 LCA: Goal and Scope Definition; 4.5 LCA: Inventory Analysis.
4.6 LCA: Impact Assessment4.6.1 Global Warming Potential; 4.6.2 Land Use; 4.6.3 Resource Use; 4.6.4 Ozone Layer Depletion; 4.6.5 Acidification Potential; 4.6.6 Photochemical Oxidant Creation Potential; 4.6.7 Aquatic Ecotoxicity; 4.6.8 Eutrophication Potential; 4.6.9 Biodiversity; 4.7 LCA: Interpretation; 4.7.1 Stand-Alone LCA; 4.7.2 Accounting LCA; 4.7.3 Change Oriented LCA; 4.7.4 Allocation Method; 4.8 LCIA Methods; 4.9 Future R & D Needs; References; 5 Data Uncertainty and Multicriteria Analyses; 5.1 Data Uncertainty Analysis; 5.1.1 Dominance Analysis; 5.1.2 Contribution Analysis.
Summary: "This book is for educators, postgraduate and final year undergraduate students in chemical engineering, environmental and biochemical engineering and applied science subjects, as well as researchers and practitioners in industry"-- Provided by publisher.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

"This book is for educators, postgraduate and final year undergraduate students in chemical engineering, environmental and biochemical engineering and applied science subjects, as well as researchers and practitioners in industry"-- Provided by publisher.

Includes index.

Includes bibliographical references and index.

Print version record and CIP data provided by publisher.

Biorefineries and Chemical Processes; Contents; Preface; Part I: Introduction; Part II: Tools; Part III: Process Synthesis and Design; Part IV: Biorefinery Systems; Part V: Interacting Systems of Biorefineries (available on the companion website); Case Studies (available on the companion website); Acknowledgments; About the Authors; Companion Website; Nomenclature; Part I Introduction; 1 Introduction; 1.1 Fundamentals of the Biorefinery Concept; 1.1.1 Biorefinery Principles; 1.1.2 Biorefinery Types and Development; 1.2 Biorefinery Features and Nomenclature; 1.3 Biorefinery Feedstock: Biomass.

1.3.1 Chemical Nature of Biorefinery Feedstocks1.3.2 Feedstock Characterization; 1.4 Processes and Platforms; 1.5 Biorefinery Products; 1.6 Optimization of Preprocessing and Fractionation for Bio Based Manufacturing; 1.6.1 Background of Lignin; 1.7 Electrochemistry Application in Biorefineries; 1.8 Introduction to Energy and Water Systems; 1.9 Evaluating Biorefinery Performances; 1.9.1 Performance Indicators; 1.9.2 Life Cycle Analysis; 1.10 Chapters; 1.11 Summary; References; Part II Tools; 2 Economic Analysis; 2.1 Introduction; 2.2 General Economic Concepts and Terminology.

2.2.1 Capital Cost and Battery Limits2.2.2 Cost Index; 2.2.3 Economies of Scale; 2.2.4 Operating Cost; 2.2.5 Cash Flows; 2.2.6 Time Value of Money; 2.2.7 Discounted Cash Flow Analysis and Net Present Value; 2.2.8 Profitability Analysis; 2.2.9 Learning Effect; 2.3 Methodology; 2.3.1 Capital Cost Estimation; 2.3.2 Profitability Analysis; 2.4 Cost Estimation and Correlation; 2.4.1 Capital Cost; 2.4.2 Operating Cost; 2.5 Summary; 2.6 Exercises; References; 3 Heat Integration and Utility System Design; 3.1 Introduction; 3.2 Process Integration.

3.3 Analysis of Heat Exchanger Network Using Pinch Technology3.3.1 Data Extraction; 3.3.2 Construction of Temperature-Enthalpy Profiles; 3.3.3 Application of the Graphical Approach for Energy Recovery; 3.4 Utility System; 3.4.1 Components in Utility System; 3.5 Conceptual Design of Heat Recovery System for Cogeneration; 3.5.1 Conventional Approach; 3.5.2 Heuristic Based Approach; 3.6 Summary; References; 4 Life Cycle Assessment; 4.1 Life Cycle Thinking; 4.2 Policy Context; 4.3 Life Cycle Assessment (LCA); 4.4 LCA: Goal and Scope Definition; 4.5 LCA: Inventory Analysis.

4.6 LCA: Impact Assessment4.6.1 Global Warming Potential; 4.6.2 Land Use; 4.6.3 Resource Use; 4.6.4 Ozone Layer Depletion; 4.6.5 Acidification Potential; 4.6.6 Photochemical Oxidant Creation Potential; 4.6.7 Aquatic Ecotoxicity; 4.6.8 Eutrophication Potential; 4.6.9 Biodiversity; 4.7 LCA: Interpretation; 4.7.1 Stand-Alone LCA; 4.7.2 Accounting LCA; 4.7.3 Change Oriented LCA; 4.7.4 Allocation Method; 4.8 LCIA Methods; 4.9 Future R & D Needs; References; 5 Data Uncertainty and Multicriteria Analyses; 5.1 Data Uncertainty Analysis; 5.1.1 Dominance Analysis; 5.1.2 Contribution Analysis.

Global Studies and Governance