Amazon cover image
Image from Amazon.com

Introduction to wood and natural fiber composites / Douglas D. Stokke, Qinglin Wu, Guangping Han.

By: Contributor(s): Material type: TextTextPublisher number: EB00119767 | Recorded BooksSeries: Wiley series in renewable resourcesPublisher: Chichester, West Sussex, United Kingdom : Wiley, 2014Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118676073
  • 1118676076
  • 9780470711798
  • 0470711795
  • 9780470711804
  • 0470711809
  • 0470710918
  • 9780470710913
Subject(s): Genre/Form: Additional physical formats: Print version:: Introduction to wood and natural fiber composites.DDC classification:
  • 674/.8 23
LOC classification:
  • TS875
Other classification:
  • SCI013000
Online resources:
Contents:
Introduction to Wood and Natural Fiber Composites; Contents; Series Preface; Preface; Acknowledgments; 1 Wood and Natural Fiber Composites: An Overview; 1.1 Introduction; 1.2 What Is Wood?; 1.3 Natural Fibers; 1.3.1 Fibers; 1.3.2 Lignocellulosic Materials; 1.3.3 Worldwide Lignocellulosic Fiber Resources; 1.3.4 Wood as a Teaching Example; 1.4 Composite Concept; 1.4.1 Composites Are Important Materials; 1.4.2 What Is a Composite?; 1.4.3 Taxonomy of Matrix Composites; 1.4.4 Laminar Composites; 1.4.5 Taxonomy of Wood and Natural Fiber Composites; 1.4.6 Composite Scale; 1.5 Cellular Solids.
1.5.1 Natural and Synthetic Cellular Solids1.5.2 Relative Density; 1.6 Objectives and Organization of This Book; References; 2 Lignocellulosic Materials; 2.1 Introduction; 2.2 Chemical Composition of Lignocellulosic Materials; 2.2.1 Polymers: Structure and Properties; 2.2.2 Lignocellulose; 2.2.3 Cellulose; 2.2.4 Hemicelluloses; 2.2.5 Pectins; 2.2.6 Lignin; 2.2.7 Extractives and Extraneous Materials; 2.3 The Woody Cell Wall as a Multicomponent Polymer System; 2.3.1 Skeletal Framework Polymers; 2.3.2 Reinforced Matrix Theory; 2.3.3 Cell Wall Ultrastructure.
2.3.4 Cell Wall Structure Dictates Physical Properties2.3.5 Cell Wall Structure from Molecular to Anatomic Level; 2.4 Anatomical Structure of Representative Plants; 2.4.1 Plant Cell Walls Are Not Solitary Entities; 2.4.2 Structure of Grain Crop Stems; 2.4.3 Structure of Herbaceous Biomass Crop Stems; 2.4.4 Structure of Bast Fiber Stems; 2.4.5 Structure of Woody Monocotyledons; 2.4.6 Wood; 2.5 Comparison of Representative Plant Stems; 2.6 Cellular Solids Revisited; References; 3 Wood as a Lignocellulose Exemplar; 3.1 Introduction.
3.2 Wood as a Representative Lignocellulosic Material: Important Physical Attributes3.3 Moisture Interactions; 3.3.1 Moisture Content; 3.3.2 Hygroscopicity; 3.3.3 States of Water in Wood; 3.3.4 Capillary or Free Water; 3.3.5 Shrinking and Swelling due to Moisture Flux; 3.4 Density and Specific Gravity of Wood; 3.4.1 Density of Wood; 3.4.2 Specific Gravity of Wood; 3.5 Wood: A Cellular Solid; 3.5.1 Relative Density of Wood; 3.6 Mechanical Properties; 3.6.1 Compression Strength; 3.6.2 Compression Strength of Wood versus Relative Density; 3.6.3 Mechanical Properties in Context.
3.7 Wood Is the Exemplar: Extending Principles to Other Plant MaterialsReferences; 4 Consolidation Behavior of Lignocellulosic Materials; 4.1 Introduction; 4.2 Synthetic Crystalline and Amorphous Polymers; 4.2.1 Polyethylene; 4.2.2 Polystyrene: Isotactic, Syndiotactic, and Atactic; 4.2.3 Degree of Crystallinity, Revisited; 4.2.4 Thermal Softening of Amorphous Polymers: Glass Transition Temperature, Tg; 4.3 Glass Transition Temperature of Wood Polymers; 4.3.1 Glass Transition Temperature of Wood Polymers: Empirical Data; 4.3.2 Kwei Equation: Modeling Tg of Wood Polymers.
Summary: "Bringing together widely scattered information on the fundamental concepts and technological applications for the manufacture of wood and natural fiber composites, this reference provides a much needed overview of this rapidly evolving field in a way that is accessible for advanced undergraduates, graduate students, and practicing professionals alike. After first covering the fundamental concepts, the book then moves on to discuss technical applications and finally concludes with a discussion on environmental considerations, sustainability, and methods of evaluating product properties and performance"-- Provided by publisher.Summary: "This book brings together widely scattered information on fundamental concepts and technological applications for the manufacture of wood- and natural fiber composites, providing a much needed and accessible overview of this rapidly evolving field"-- Provided by publisher.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Includes bibliographical references and index.

"Bringing together widely scattered information on the fundamental concepts and technological applications for the manufacture of wood and natural fiber composites, this reference provides a much needed overview of this rapidly evolving field in a way that is accessible for advanced undergraduates, graduate students, and practicing professionals alike. After first covering the fundamental concepts, the book then moves on to discuss technical applications and finally concludes with a discussion on environmental considerations, sustainability, and methods of evaluating product properties and performance"-- Provided by publisher.

"This book brings together widely scattered information on fundamental concepts and technological applications for the manufacture of wood- and natural fiber composites, providing a much needed and accessible overview of this rapidly evolving field"-- Provided by publisher.

Print version record and CIP data provided by publisher.

Introduction to Wood and Natural Fiber Composites; Contents; Series Preface; Preface; Acknowledgments; 1 Wood and Natural Fiber Composites: An Overview; 1.1 Introduction; 1.2 What Is Wood?; 1.3 Natural Fibers; 1.3.1 Fibers; 1.3.2 Lignocellulosic Materials; 1.3.3 Worldwide Lignocellulosic Fiber Resources; 1.3.4 Wood as a Teaching Example; 1.4 Composite Concept; 1.4.1 Composites Are Important Materials; 1.4.2 What Is a Composite?; 1.4.3 Taxonomy of Matrix Composites; 1.4.4 Laminar Composites; 1.4.5 Taxonomy of Wood and Natural Fiber Composites; 1.4.6 Composite Scale; 1.5 Cellular Solids.

1.5.1 Natural and Synthetic Cellular Solids1.5.2 Relative Density; 1.6 Objectives and Organization of This Book; References; 2 Lignocellulosic Materials; 2.1 Introduction; 2.2 Chemical Composition of Lignocellulosic Materials; 2.2.1 Polymers: Structure and Properties; 2.2.2 Lignocellulose; 2.2.3 Cellulose; 2.2.4 Hemicelluloses; 2.2.5 Pectins; 2.2.6 Lignin; 2.2.7 Extractives and Extraneous Materials; 2.3 The Woody Cell Wall as a Multicomponent Polymer System; 2.3.1 Skeletal Framework Polymers; 2.3.2 Reinforced Matrix Theory; 2.3.3 Cell Wall Ultrastructure.

2.3.4 Cell Wall Structure Dictates Physical Properties2.3.5 Cell Wall Structure from Molecular to Anatomic Level; 2.4 Anatomical Structure of Representative Plants; 2.4.1 Plant Cell Walls Are Not Solitary Entities; 2.4.2 Structure of Grain Crop Stems; 2.4.3 Structure of Herbaceous Biomass Crop Stems; 2.4.4 Structure of Bast Fiber Stems; 2.4.5 Structure of Woody Monocotyledons; 2.4.6 Wood; 2.5 Comparison of Representative Plant Stems; 2.6 Cellular Solids Revisited; References; 3 Wood as a Lignocellulose Exemplar; 3.1 Introduction.

3.2 Wood as a Representative Lignocellulosic Material: Important Physical Attributes3.3 Moisture Interactions; 3.3.1 Moisture Content; 3.3.2 Hygroscopicity; 3.3.3 States of Water in Wood; 3.3.4 Capillary or Free Water; 3.3.5 Shrinking and Swelling due to Moisture Flux; 3.4 Density and Specific Gravity of Wood; 3.4.1 Density of Wood; 3.4.2 Specific Gravity of Wood; 3.5 Wood: A Cellular Solid; 3.5.1 Relative Density of Wood; 3.6 Mechanical Properties; 3.6.1 Compression Strength; 3.6.2 Compression Strength of Wood versus Relative Density; 3.6.3 Mechanical Properties in Context.

3.7 Wood Is the Exemplar: Extending Principles to Other Plant MaterialsReferences; 4 Consolidation Behavior of Lignocellulosic Materials; 4.1 Introduction; 4.2 Synthetic Crystalline and Amorphous Polymers; 4.2.1 Polyethylene; 4.2.2 Polystyrene: Isotactic, Syndiotactic, and Atactic; 4.2.3 Degree of Crystallinity, Revisited; 4.2.4 Thermal Softening of Amorphous Polymers: Glass Transition Temperature, Tg; 4.3 Glass Transition Temperature of Wood Polymers; 4.3.1 Glass Transition Temperature of Wood Polymers: Empirical Data; 4.3.2 Kwei Equation: Modeling Tg of Wood Polymers.

Physical Science