Amazon cover image
Image from Amazon.com

Meteorological Measurements and Instrumentation.

By: Material type: TextTextSeries: Advancing weather and climate sciencePublication details: Hoboken : Wiley, 2014.Description: 1 online resource (278 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118745793
  • 1118745795
  • 9781118745786
  • 1118745787
  • 9781118745809
  • 1118745809
  • 9781322212821
  • 1322212821
Subject(s): Genre/Form: Additional physical formats: Print version:: Meteorological Measurements and Instrumentation.DDC classification:
  • 551.6
LOC classification:
  • QC39
Online resources:
Contents:
Meteorological Measurements and Instrumentation; Contents; Series Foreword; Advancing Weather and Climate Science; Preface; Acknowledgements; Disclaimer; 1 Introduction; 1.1 The instrumental age; 1.2 Measurements and the climate record; 1.3 Clouds and rainfall; 1.4 Standardisation of air temperature measurements; 1.5 Upper air measurements; 1.5.1 Manned balloon ascents; 1.5.2 Self-reporting upper air instruments; 1.6 Scope and structure; 2 Principles of Measurement and Instrumentation; 2.1 Instruments and measurement systems; 2.1.1 Instrument response characterisation.
2.1.2 Measurement quality2.2 Instrument response time; 2.2.1 Response to a step change; 2.2.2 Response to an oscillation; 2.3 Deriving the standard error; 2.3.1 Sample mean; 2.3.2 Standard error; 2.3.3 Quoting results; 2.4 Calculations combining uncertainties; 2.4.1 Sums and differences; 2.4.2 Products and quotients; 2.4.3 Uncertainties from functions; 2.5 Calibration experiments; 3 Electronics and Analogue Signal Processing; 3.1 Voltage measurements; 3.2 Signal conditioning; 3.2.1 Operational amplifiers; 3.2.2 Operational amplifier fundamentals; 3.2.3 Signal amplification.
3.2.4 Buffer amplifiers3.2.5 Inverting amplifier; 3.2.6 Line driving; 3.2.7 Power supplies; 3.3 Voltage signals; 3.3.1 Electrometers; 3.3.2 Microvolt amplifier; 3.4 Current measurement; 3.4.1 Current to voltage conversion; 3.4.2 Photocurrent amplifier; 3.4.3 Logarithmic measurements; 3.4.4 Calibration currents; 3.5 Resistance measurement; 3.5.1 Thermistor resistance measurement; 3.5.2 Resistance bridge methods; 3.6 Oscillatory signals; 3.6.1 Oscillators; 3.6.2 Phase-locked loops; 3.6.3 Frequency to voltage conversion; 3.7 Physical implementation.
4 Data Acquisition Systems and Initial Data Analysis4.1 Data acquisition; 4.1.1 Count data; 4.1.2 Frequency data; 4.1.3 Interval data; 4.1.4 Voltage data; 4.1.5 Sampling; 4.1.6 Time synchronisation; 4.2 Custom data logging systems; 4.2.1 Data acquisition cards; 4.2.2 Microcontroller systems; 4.2.3 Automatic Weather Stations; 4.3 Management of data files; 4.3.1 Data logger programming; 4.3.2 Data transfer; 4.3.3 Data file considerations; 4.4 Preliminary data examination; 4.4.1 In situ calibration; 4.4.2 Time series; 4.4.3 Irregular and intermittent time series; 4.4.4 Further data analysis.
5 Temperature5.1 The Celsius temperature scale; 5.2 Liquid in glass thermometry; 5.2.1 Fixed interval temperature scales; 5.2.2 Liquid-in-glass thermometers; 5.3 Electrical temperature sensors; 5.3.1 Thermocouple; 5.3.2 Semiconductor; 5.3.3 Thermistor; 5.3.4 Metal resistance thermometry; 5.4 Resistance thermometry considerations; 5.4.1 Thermistor measurement; 5.4.2 Platinum resistance measurement; 5.5 Thermometer exposure; 5.5.1 Radiation error of air temperature sensors; 5.5.2 Thermometer radiation screens; 5.5.3 Radiation errors on screen temperatures; 5.5.4 Lag times in screen temperatures.
Summary: This book describes the fundamental scientific principles underlying high quality instrumentation used for environmental measurements. It discusses a wide range of in situ sensors employed in practical environmental monitoring and, in particular, those used in surface based measurement systems. It also considers the use of weather balloons to provide a wealth of upper atmosphere data. To illustrate the technologies in use it includes many examples of real atmospheric measurements in typical and unusual circumstances, with a discussion of the electronic signal conditioning, data acquisition co.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Print version record.

Meteorological Measurements and Instrumentation; Contents; Series Foreword; Advancing Weather and Climate Science; Preface; Acknowledgements; Disclaimer; 1 Introduction; 1.1 The instrumental age; 1.2 Measurements and the climate record; 1.3 Clouds and rainfall; 1.4 Standardisation of air temperature measurements; 1.5 Upper air measurements; 1.5.1 Manned balloon ascents; 1.5.2 Self-reporting upper air instruments; 1.6 Scope and structure; 2 Principles of Measurement and Instrumentation; 2.1 Instruments and measurement systems; 2.1.1 Instrument response characterisation.

2.1.2 Measurement quality2.2 Instrument response time; 2.2.1 Response to a step change; 2.2.2 Response to an oscillation; 2.3 Deriving the standard error; 2.3.1 Sample mean; 2.3.2 Standard error; 2.3.3 Quoting results; 2.4 Calculations combining uncertainties; 2.4.1 Sums and differences; 2.4.2 Products and quotients; 2.4.3 Uncertainties from functions; 2.5 Calibration experiments; 3 Electronics and Analogue Signal Processing; 3.1 Voltage measurements; 3.2 Signal conditioning; 3.2.1 Operational amplifiers; 3.2.2 Operational amplifier fundamentals; 3.2.3 Signal amplification.

3.2.4 Buffer amplifiers3.2.5 Inverting amplifier; 3.2.6 Line driving; 3.2.7 Power supplies; 3.3 Voltage signals; 3.3.1 Electrometers; 3.3.2 Microvolt amplifier; 3.4 Current measurement; 3.4.1 Current to voltage conversion; 3.4.2 Photocurrent amplifier; 3.4.3 Logarithmic measurements; 3.4.4 Calibration currents; 3.5 Resistance measurement; 3.5.1 Thermistor resistance measurement; 3.5.2 Resistance bridge methods; 3.6 Oscillatory signals; 3.6.1 Oscillators; 3.6.2 Phase-locked loops; 3.6.3 Frequency to voltage conversion; 3.7 Physical implementation.

4 Data Acquisition Systems and Initial Data Analysis4.1 Data acquisition; 4.1.1 Count data; 4.1.2 Frequency data; 4.1.3 Interval data; 4.1.4 Voltage data; 4.1.5 Sampling; 4.1.6 Time synchronisation; 4.2 Custom data logging systems; 4.2.1 Data acquisition cards; 4.2.2 Microcontroller systems; 4.2.3 Automatic Weather Stations; 4.3 Management of data files; 4.3.1 Data logger programming; 4.3.2 Data transfer; 4.3.3 Data file considerations; 4.4 Preliminary data examination; 4.4.1 In situ calibration; 4.4.2 Time series; 4.4.3 Irregular and intermittent time series; 4.4.4 Further data analysis.

5 Temperature5.1 The Celsius temperature scale; 5.2 Liquid in glass thermometry; 5.2.1 Fixed interval temperature scales; 5.2.2 Liquid-in-glass thermometers; 5.3 Electrical temperature sensors; 5.3.1 Thermocouple; 5.3.2 Semiconductor; 5.3.3 Thermistor; 5.3.4 Metal resistance thermometry; 5.4 Resistance thermometry considerations; 5.4.1 Thermistor measurement; 5.4.2 Platinum resistance measurement; 5.5 Thermometer exposure; 5.5.1 Radiation error of air temperature sensors; 5.5.2 Thermometer radiation screens; 5.5.3 Radiation errors on screen temperatures; 5.5.4 Lag times in screen temperatures.

5.5.5 Screen condition.

This book describes the fundamental scientific principles underlying high quality instrumentation used for environmental measurements. It discusses a wide range of in situ sensors employed in practical environmental monitoring and, in particular, those used in surface based measurement systems. It also considers the use of weather balloons to provide a wealth of upper atmosphere data. To illustrate the technologies in use it includes many examples of real atmospheric measurements in typical and unusual circumstances, with a discussion of the electronic signal conditioning, data acquisition co.

Electrical & Electronic Engineering