Amazon cover image
Image from Amazon.com

Photonics : scientific foundations, technology and applications / edited by David L. Andrews.

Contributor(s): Material type: TextTextSeries: Wiley-Science Wise Co-PublicationPublisher: Hoboken, New Jersey : Wiley, 2015Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119009702
  • 1119009707
  • 9781119009696
  • 1119009693
  • 9781119009719
  • 1119009715
Subject(s): Genre/Form: Additional physical formats: Print version:: Fundamentals of photonics and physics.DDC classification:
  • 621.36/5 23
LOC classification:
  • TA1520
Online resources:
Contents:
Photonics; Contents; List of Contributors; Preface; 1 A Photon in Perspective; 1.1 Introduction; 1.2 Foundations; 1.2.1 Modes of Optical Propagation; 1.2.2 Quantum Foundations; 1.2.3 Developing Quantum Optics; 1.2.4 Boson Statistics; 1.3 Medium Issues; 1.3.1 Speed of Propagation; 1.3.2 Momentum; 1.3.3 Directedness of Propagation; 1.4 Photon Localization and Wavefunction; 1.4.1 Localization; 1.4.2 Wavefunction; 1.5 The Quantum Vacuum and Virtual Photons; 1.5.1 Vacuum Fluctuations; 1.5.2 Virtual Photons in Action; 1.5.3 Virtual Photon Propagation; 1.5.4 Casimir Forces; 1.6 Structured Light.
1.6.1 Complex Modes and Vector Beams1.6.2 Chirality and Angular Momentum; 1.6.3 Multipole Emission; 1.6.4 Information in a Photon; 1.7 Photon Number Fluctuations and Phase; 1.7.1 Coherence and Fluctuations; 1.7.2 Phase; 1.8 The Reality of Photonics; Acknowledgments; References; 2 Coherence and Statistical Optics; 2.1 Introduction; 2.2 Classical Theory of Optical Coherence in the Space-Time Domain; 2.2.1 Degree of Coherence in the Space-Time Domain; 2.2.2 Complete Spatial Coherence in the Time Domain; 2.3 Classical Theory of Optical Coherence in the Space-Frequency Domain.
2.3.1 Degree of Coherence in the Space-Frequency Domain2.3.2 Complete Spatial Coherence in the Frequency Domain; 2.4 Cross-Spectrally Pure Optical Fields; 2.4.1 Application of Coherence Theory in Structure Determination of Random Media; 2.5 Polarization Properties of Stochastic Beams; 2.5.1 Matrix Formulation of the Theory of Polarization; 2.5.2 Unpolarized, Polarized, and Partially Polarized Light Beam; 2.5.3 Statistical Similarity and Complete Polarization; 2.5.4 Polarization Properties of Light in the Frequency Domain.
2.5.5 Remarks on Polarization Properties of Light in Time and Frequency Domains2.6 Remarks on Partially Coherent and Partially Polarized Beams; 2.7 Basics of Quantum Theory of Optical Coherence; 2.8 Concluding Remarks; Acknowledgments; References; 3 Light Beams with Spatially Variable Polarization; 3.1 Introduction; 3.2 POINCARÉ Modes of Beams; 3.2.1 States of Polarization; 3.2.2 Spatial Modes; 3.2.3 Poincaré Modes; 3.3 Experimental Approaches; 3.4 Polarization Singularities; 3.5 Conclusion; Acknowledgments; References; 4 Quantum Optics; 4.1 Introduction; 4.2 Fundamentals.
4.2.1 Quantum Mechanics of the Harmonic Oscillator4.2.2 The Electromagnetic Field; 4.2.3 Phase-Space Representations of the Quantum State; 4.2.4 Two-State System or Qubit; 4.2.5 Electric Dipole Interaction; 4.3 Open Systems: Inputs and Outputs; 4.3.1 Heisenberg Picture; 4.3.2 Schrödinger Picture; 4.3.3 Quantum Regression; 4.3.4 Quantum Jumps; 4.4 Photon Counting; 4.4.1 Basics; 4.4.2 Classical and Nonclassical Fields; 4.4.3 Homodyne/Heterodyne Detection; 4.4.4 Quantum Trajectory Theory; 4.5 Cavity and Circuit QED; 4.5.1 Jaynes-Cummings Model; 4.5.2 Jaynes-Cummings Model with Decay.
Summary: This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Includes bibliographical references and index.

Print version record and CIP data provided by publisher.

Photonics; Contents; List of Contributors; Preface; 1 A Photon in Perspective; 1.1 Introduction; 1.2 Foundations; 1.2.1 Modes of Optical Propagation; 1.2.2 Quantum Foundations; 1.2.3 Developing Quantum Optics; 1.2.4 Boson Statistics; 1.3 Medium Issues; 1.3.1 Speed of Propagation; 1.3.2 Momentum; 1.3.3 Directedness of Propagation; 1.4 Photon Localization and Wavefunction; 1.4.1 Localization; 1.4.2 Wavefunction; 1.5 The Quantum Vacuum and Virtual Photons; 1.5.1 Vacuum Fluctuations; 1.5.2 Virtual Photons in Action; 1.5.3 Virtual Photon Propagation; 1.5.4 Casimir Forces; 1.6 Structured Light.

1.6.1 Complex Modes and Vector Beams1.6.2 Chirality and Angular Momentum; 1.6.3 Multipole Emission; 1.6.4 Information in a Photon; 1.7 Photon Number Fluctuations and Phase; 1.7.1 Coherence and Fluctuations; 1.7.2 Phase; 1.8 The Reality of Photonics; Acknowledgments; References; 2 Coherence and Statistical Optics; 2.1 Introduction; 2.2 Classical Theory of Optical Coherence in the Space-Time Domain; 2.2.1 Degree of Coherence in the Space-Time Domain; 2.2.2 Complete Spatial Coherence in the Time Domain; 2.3 Classical Theory of Optical Coherence in the Space-Frequency Domain.

2.3.1 Degree of Coherence in the Space-Frequency Domain2.3.2 Complete Spatial Coherence in the Frequency Domain; 2.4 Cross-Spectrally Pure Optical Fields; 2.4.1 Application of Coherence Theory in Structure Determination of Random Media; 2.5 Polarization Properties of Stochastic Beams; 2.5.1 Matrix Formulation of the Theory of Polarization; 2.5.2 Unpolarized, Polarized, and Partially Polarized Light Beam; 2.5.3 Statistical Similarity and Complete Polarization; 2.5.4 Polarization Properties of Light in the Frequency Domain.

2.5.5 Remarks on Polarization Properties of Light in Time and Frequency Domains2.6 Remarks on Partially Coherent and Partially Polarized Beams; 2.7 Basics of Quantum Theory of Optical Coherence; 2.8 Concluding Remarks; Acknowledgments; References; 3 Light Beams with Spatially Variable Polarization; 3.1 Introduction; 3.2 POINCARÉ Modes of Beams; 3.2.1 States of Polarization; 3.2.2 Spatial Modes; 3.2.3 Poincaré Modes; 3.3 Experimental Approaches; 3.4 Polarization Singularities; 3.5 Conclusion; Acknowledgments; References; 4 Quantum Optics; 4.1 Introduction; 4.2 Fundamentals.

4.2.1 Quantum Mechanics of the Harmonic Oscillator4.2.2 The Electromagnetic Field; 4.2.3 Phase-Space Representations of the Quantum State; 4.2.4 Two-State System or Qubit; 4.2.5 Electric Dipole Interaction; 4.3 Open Systems: Inputs and Outputs; 4.3.1 Heisenberg Picture; 4.3.2 Schrödinger Picture; 4.3.3 Quantum Regression; 4.3.4 Quantum Jumps; 4.4 Photon Counting; 4.4.1 Basics; 4.4.2 Classical and Nonclassical Fields; 4.4.3 Homodyne/Heterodyne Detection; 4.4.4 Quantum Trajectory Theory; 4.5 Cavity and Circuit QED; 4.5.1 Jaynes-Cummings Model; 4.5.2 Jaynes-Cummings Model with Decay.

This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol.

Physical Science