Amazon cover image
Image from Amazon.com

Advanced aircraft design : conceptual design, analysis, and optimization of subsonic civil airplanes / Egbert Torenbeek.

By: Material type: TextTextSeries: Aerospace series (Chichester, England)Description: 1 online resourceISBN:
  • 9781118568095 ( ePub)
  • 1118568095 ( ePub)
  • 9781118568071 (MobiPocket)
  • 1118568079 (MobiPocket)
  • 9781118568088 (Adobe PDF)
  • 1118568087 (Adobe PDF)
  • 9781118568101 (electronic bk.)
  • 1118568109 (electronic bk.)
Subject(s): Genre/Form: Additional physical formats: Print version:: Advanced aircraft designDDC classification:
  • 629.133/34 23
LOC classification:
  • TL671.2
Online resources:
Contents:
Machine generated contents note: 1.Design of the Well-Tempered Aircraft -- 1.1.How Aircraft Design Developed -- 1.1.1.Evolution of Jetliners and Executive Aircraft -- 1.1.2.A Framework for Advanced Design -- 1.1.3.Analytical Design Optimization -- 1.1.4.Computational Design Environment -- 1.2.Concept Finding -- 1.2.1.Advanced Design -- 1.2.2.Pre-conceptual Studies -- 1.3.Product Development -- 1.3.1.Concept Definition -- 1.3.2.Preliminary Design -- 1.3.3.Detail Design -- 1.4.Baseline Design in a Nutshell -- 1.4.1.Baseline Sizing -- 1.4.2.Power Plant -- 1.4.3.Weight and Balance -- 1.4.4.Structure -- 1.4.5.Performance Analysis -- 1.4.6.Closing the Loop -- 1.5.Automated Design Synthesis -- 1.5.1.Computational Systems Requirements -- 1.5.2.Examples -- 1.5.3.Parametric Surveys -- 1.6.Technology Assessment -- 1.7.Structure of the Optimization Problem -- 1.7.1.Analysis Versus Synthesis -- 1.7.2.Problem Classification -- Bibliography -- 2.Early Conceptual Design -- 2.1.Scenario and Requirements -- 2.1.1.What Drives a Design? -- 2.1.2.Civil Airplane Categories -- 2.1.3.Top Level Requirements -- 2.2.Weight Terminology and Prediction -- 2.2.1.Method Classification -- 2.2.2.Basic Weight Components -- 2.2.3.Weight Limits -- 2.2.4.Transport Capability -- 2.3.The Unity Equation -- 2.3.1.Mission Fuel -- 2.3.2.Empty Weight -- 2.3.3.Design Weights -- 2.4.Range Parameter -- 2.4.1.Aerodynamic Efficiency -- 2.4.2.Specific Fuel Consumption and Overall Efficiency -- 2.4.3.Best Cruise Speed -- 2.5.Environmental Issues -- 2.5.1.Energy and Payload Fuel Efficiency -- 2.5.2.`Greener by Design' -- Bibliography -- 3.Propulsion and Engine Technology -- 3.1.Propulsion Leading the Way -- 3.2.Basic Concepts of Jet Propulsion -- 3.2.1.Turbojet Thrust -- 3.2.2.Turbofan Thrust -- 3.2.3.Specific Fuel Consumption -- 3.2.4.Overall Efficiency -- 3.2.5.Thermal and Propulsive Efficiency -- 3.2.6.Generalized Performance -- 3.2.7.Mach Number and Altitude Effects -- 3.3.Turboprop Engines -- 3.3.1.Power and Specific Fuel Consumption -- 3.3.2.Generalized Performance -- 3.3.3.High Speed Propellers -- 3.4.Turbofan Engine Layout -- 3.4.1.Bypass Ratio Trends -- 3.4.2.Rise and Fall of the Propfan -- 3.4.3.Rebirth of the Open Rotor? -- 3.5.Power Plant Selection -- 3.5.1.Power Plant Location -- 3.5.2.Alternative Fuels -- 3.5.3.Aircraft Noise -- Bibliography -- 4.Aerodynamic Drag and Its Reduction -- 4.1.Basic Concepts -- 4.1.1.Lift, Drag and Aerodynamic Efficiency -- 4.1.2.Drag Breakdown and Definitions -- 4.2.Decomposition Schemes and Terminology -- 4.2.1.Pressure and Friction Drag -- 4.2.2.Viscous Drag -- 4.2.3.Vortex Drag -- 4.2.4.Wave Drag -- 4.3.Subsonic Parasite and Induced Drag -- 4.3.1.Parasite Drag -- 4.3.2.Monoplane Induced Drag -- 4.3.3.Biplane Induced Drag -- 4.3.4.Multiplane and Boxplane Induced Drag -- 4.4.Drag Polar Representations -- 4.4.1.Two-term Approximation -- 4.4.2.Three-term Approximation -- 4.4.3.Reynolds Number Effects -- 4.4.4.Compressibility Correction -- 4.5.Drag Prediction -- 4.5.1.Interference Drag -- 4.5.2.Roughness and Excrescences -- 4.5.3.Corrections Dependent on Operation -- 4.5.4.Estimation of Maximum Subsonic L/D -- 4.5.5.Low-Speed Configuration -- 4.6.Viscous Drag Reduction -- 4.6.1.Wetted Area -- 4.6.2.Turbulent Friction Drag -- 4.6.3.Natural Laminar Flow -- 4.6.4.Laminar Flow Control -- 4.6.5.Hybrid Laminar Flow Control -- 4.6.6.Gains, Challenges and Barriers of LFC -- 4.7.Induced Drag Reduction -- 4.7.1.Wing Span -- 4.7.2.Spanwise Camber -- 4.7.3.Non-planar Wing Systems -- Bibliography -- 5.From Tube and Wing to Flying Wing -- 5.1.The Case for Flying Wings -- 5.1.1.Northrop's All-Wing Aircraft -- 5.1.2.Flying Wing Controversy -- 5.1.3.Whither All-Wing Airliners? -- 5.1.4.Fundamental Issues -- 5.2.Allocation of Useful Volume -- 5.2.1.Integration of the Useful Load -- 5.2.2.Study Ground Rules -- 5.2.3.Volume Ratio -- 5.2.4.Zero-Lift Drag -- 5.2.5.Generalized Aerodynamic Efficiency -- 5.2.6.Partial Optima -- 5.3.Survey of Aerodynamic Efficiency -- 5.3.1.Altitude Variation -- 5.3.2.Aspect Ratio and Span -- 5.3.3.Engine-Airframe Matching -- 5.4.Survey of the Parameter ML/D -- 5.4.1.Optimum Flight Conditions -- 5.4.2.The Drag Parameter -- 5.5.Integrated Configurations Compared -- 5.5.1.Conventional Baseline -- 5.5.2.Is a Wing Alone Sufficient? -- 5.5.3.Blended Wing Body -- 5.5.4.Hybrid Flying Wing -- 5.5.5.Span Loader -- 5.6.Flying Wing Design -- 5.6.1.Hang-Ups or Showstopper? -- 5.6.2.Structural Design and Weight -- 5.6.3.The Flying Wing: Will It Fly? -- Bibliography -- 6.Clean Sheet Design -- 6.1.Dominant and Radical Configurations -- 6.1.1.Established Configurations -- 6.1.2.New Paradigms -- 6.2.Morphology of Shapes -- 6.2.1.Classification -- 6.2.2.Lifting Systems -- 6.2.3.Plan View Classification -- 6.2.4.Strut-Braced Wings -- 6.2.5.Propulsion and Concept Integration -- 6.3.Wing and Tail Configurations -- 6.3.1.Aerodynamic Limits -- 6.3.2.The Balanced Design -- 6.3.3.Evaluation -- 6.3.4.Relaxed Inherent Stability -- 6.4.Aircraft Featuring a Foreplane -- 6.4.1.Canard Configuration -- 6.4.2.Three-Surface Aircraft -- 6.5.Non-Planar Lifting Systems -- 6.5.1.Transonic Boxplane -- 6.5.2.C-Wing -- 6.6.Joined Wing Aircraft -- 6.6.1.Structural Principles and Weight -- 6.6.2.Aerodynamic Aspects -- 6.6.3.Stability and Control -- 6.6.4.Design Integration -- 6.7.Twin-Fuselage Aircraft -- 6.7.1.Design Integration -- 6.8.Hydrogen-Fuelled Commercial Transports -- 6.8.1.Properties of LH2 -- 6.8.2.Fuel System -- 6.8.3.Handling Safety, Economics and Logistics -- 6.9.Promising Concepts -- Bibliography -- 7.Aircraft Design Optimization -- 7.1.The Perfect Design: An Illusion? -- 7.2.Elements of Optimization -- 7.2.1.Design Parameters -- 7.2.2.Optimal Control and Discrete-Variable Optimization -- 7.2.3.Basic Terminology -- 7.2.4.Single-Objective Optimization -- 7.2.5.Unconstrained Optimizer -- 7.2.6.Constrained Optimizer -- 7.3.Analytical or Numerical Optimization? -- 7.3.1.Analytical Approach -- 7.3.2.Multivariate Optimization -- 7.3.3.Unconstrained Optimization -- 7.3.4.Constrained Optimization -- 7.3.5.Response Surface Approximation -- 7.3.6.Global Models -- 7.4.Large Optimization Problems -- 7.4.1.Concept Sizing and Evaluation -- 7.4.2.Multidisciplinary Optimization -- 7.4.3.System Decomposition -- 7.4.4.Multilevel Optimization -- 7.4.5.Multi-Objective Optimization -- 7.5.Practical Optimization in Conceptual Design -- 7.5.1.Arguments of the Sceptic -- 7.5.2.Problem Structure -- 7.5.3.Selecting Selection Variables -- 7.5.4.Design Sensitivity -- 7.5.5.The Objective Function -- Bibliography -- 8.Theory of Optimum Weight -- 8.1.Weight Engineering: Core of Aircraft Design -- 8.1.1.Prediction Methods -- 8.1.2.Use of Statistics -- 8.2.Design Sensitivity -- 8.2.1.Problem Structure -- 8.2.2.Selection Variables -- 8.3.Jet Transport Empty Weight -- 8.3.1.Weight Breakdown -- 8.3.2.Wing Structure (Item 10) -- 8.3.3.Fuselage Structure (Item 11) -- 8.3.4.Empennage Structure (Items 12 and 13) -- 8.3.5.Landing Gear Structure (Item 14) -- 8.3.6.Power Plant and Engine Pylons (Items 2 and 15) -- 8.3.7.Systems, Furnishings and Operational Items (Items 3, 4 and 5) -- 8.3.8.Operating Empty Weight: Example -- 8.4.Design Sensitivity of Airframe Drag -- 8.4.1.Drag Decomposition -- 8.4.2.Aerodynamic Efficiency -- 8.5.Thrust, Power Plant and Fuel Weight -- 8.5.1.Installed Thrust and Power Plant Weight -- 8.5.2.Mission Fuel -- 8.5.3.Propulsion Weight Penalty -- 8.5.4.Wing and Propulsion Weight Fraction -- 8.5.5.Optimum Weight Fractions Compared -- 8.6.Take-Off Weight, Thrust and Fuel Efficiency -- 8.6.1.Maximum Take-Off Weight -- 8.6.2.Installed Thrust and Fuel Energy Efficiency -- 8.6.3.Unconstrained Optima Compared -- 8.6.4.Range for Given MTOW -- 8.6.5.Extended Range Version -- 8.7.Summary and Reflection -- 8.7.1.Which Figure of Merit? -- 8.7.2.Conclusion -- 8.7.3.Accuracy -- Bibliography -- 9.Matching Engines and Airframe -- 9.1.Requirements and Constraints -- 9.2.Cruise-Sized Engines --
9.2.1.Installed Take-Off Thrust -- 9.2.2.The Thumbprint -- 9.3.Low Speed Requirements -- 9.3.1.Stalling Speed -- 9.3.2.Take-Off Climb -- 9.3.3.Approach and Landing Climb -- 9.3.4.Second Segment Climb Gradient -- 9.4.Schematic Take-Off Analysis -- 9.4.1.Definitions of Take-Off Field Length -- 9.4.2.Take-Off Run -- 9.4.3.Airborne Distance -- 9.4.4.Take-Off Distance -- 9.4.5.Generalized Thrust and Span Loading Constraint -- 9.4.6.Minimum Thrust for Given TOFL -- 9.5.Approach and Landing -- 9.5.1.Landing Distance Analysis -- 9.5.2.Approach Speed and Wing Loading -- 9.6.Engine Selection and Installation -- 9.6.1.Identifying the Best Match -- 9.6.2.Initial Engine Assessment -- 9.6.3.Engine Selection -- Bibliography -- 10.Elements of Aerodynamic Wing Design -- 10.1.Introduction -- 10.1.1.Problem Structure -- 10.1.2.Relation to Engine Selection -- 10.2.Planform Geometry -- 10.2.1.Wing Area and Design Lift Coefficient -- 10.2.2.Span and Aspect Ratio -- 10.3.Design Sensitivity Information -- 10.3.1.Aerodynamic Efficiency -- 10.3.2.Propulsion Weight Contribution -- 10.3.3.Wing and Tail Structure Weight -- 10.3.4.Wing Penalty Function and MTOW -- 10.4.Subsonic Aircraft Wing -- 10.4.1.Problem Structure -- 10.4.2.Unconstrained Optima -- 10.4.3.Minimum Propulsion Weight Penalty -- 10.4.4.Accuracy -- 10.5.Constrained Optima -- 10.5.1.Take-Off Field Length -- 10.5.2.Tank Volume -- 10.5.3.Wing and Tail Weight Fraction -- 10.5.4.Selection of the Design -- 10.6.Transonic Aircraft Wing -- 10.6.1.Geometry -- 10.6.2.Wing Drag in the Design Condition -- 10.6.3.Modified Wing Penalty Function -- 10.6.4.Thickness Ratio Limit -- 10.6.5.WPF Affected by Sweep Angle and Thickness Ratio -- 10.7.Lift Coefficient and Aspect Ratio -- 10.7.1.Partial Optima -- 10.7.2.Constraints -- 10.7.3.Refining the Optimization -- 10.8.Detailed Design -- 10.8.1.Taper and Lift Distribution -- 10.8.2.Camber and Twist Distribution -- 10.8.3.Forward Swept Wing (FSW) -- 10.8.4.Wing-Tip Devices -- 10.9.High Lift Devices --
List(s) this item appears in: EEE | Computer Science and Engineering
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Includes bibliographical references and index.

Machine generated contents note: 1.Design of the Well-Tempered Aircraft -- 1.1.How Aircraft Design Developed -- 1.1.1.Evolution of Jetliners and Executive Aircraft -- 1.1.2.A Framework for Advanced Design -- 1.1.3.Analytical Design Optimization -- 1.1.4.Computational Design Environment -- 1.2.Concept Finding -- 1.2.1.Advanced Design -- 1.2.2.Pre-conceptual Studies -- 1.3.Product Development -- 1.3.1.Concept Definition -- 1.3.2.Preliminary Design -- 1.3.3.Detail Design -- 1.4.Baseline Design in a Nutshell -- 1.4.1.Baseline Sizing -- 1.4.2.Power Plant -- 1.4.3.Weight and Balance -- 1.4.4.Structure -- 1.4.5.Performance Analysis -- 1.4.6.Closing the Loop -- 1.5.Automated Design Synthesis -- 1.5.1.Computational Systems Requirements -- 1.5.2.Examples -- 1.5.3.Parametric Surveys -- 1.6.Technology Assessment -- 1.7.Structure of the Optimization Problem -- 1.7.1.Analysis Versus Synthesis -- 1.7.2.Problem Classification -- Bibliography -- 2.Early Conceptual Design -- 2.1.Scenario and Requirements -- 2.1.1.What Drives a Design? -- 2.1.2.Civil Airplane Categories -- 2.1.3.Top Level Requirements -- 2.2.Weight Terminology and Prediction -- 2.2.1.Method Classification -- 2.2.2.Basic Weight Components -- 2.2.3.Weight Limits -- 2.2.4.Transport Capability -- 2.3.The Unity Equation -- 2.3.1.Mission Fuel -- 2.3.2.Empty Weight -- 2.3.3.Design Weights -- 2.4.Range Parameter -- 2.4.1.Aerodynamic Efficiency -- 2.4.2.Specific Fuel Consumption and Overall Efficiency -- 2.4.3.Best Cruise Speed -- 2.5.Environmental Issues -- 2.5.1.Energy and Payload Fuel Efficiency -- 2.5.2.`Greener by Design' -- Bibliography -- 3.Propulsion and Engine Technology -- 3.1.Propulsion Leading the Way -- 3.2.Basic Concepts of Jet Propulsion -- 3.2.1.Turbojet Thrust -- 3.2.2.Turbofan Thrust -- 3.2.3.Specific Fuel Consumption -- 3.2.4.Overall Efficiency -- 3.2.5.Thermal and Propulsive Efficiency -- 3.2.6.Generalized Performance -- 3.2.7.Mach Number and Altitude Effects -- 3.3.Turboprop Engines -- 3.3.1.Power and Specific Fuel Consumption -- 3.3.2.Generalized Performance -- 3.3.3.High Speed Propellers -- 3.4.Turbofan Engine Layout -- 3.4.1.Bypass Ratio Trends -- 3.4.2.Rise and Fall of the Propfan -- 3.4.3.Rebirth of the Open Rotor? -- 3.5.Power Plant Selection -- 3.5.1.Power Plant Location -- 3.5.2.Alternative Fuels -- 3.5.3.Aircraft Noise -- Bibliography -- 4.Aerodynamic Drag and Its Reduction -- 4.1.Basic Concepts -- 4.1.1.Lift, Drag and Aerodynamic Efficiency -- 4.1.2.Drag Breakdown and Definitions -- 4.2.Decomposition Schemes and Terminology -- 4.2.1.Pressure and Friction Drag -- 4.2.2.Viscous Drag -- 4.2.3.Vortex Drag -- 4.2.4.Wave Drag -- 4.3.Subsonic Parasite and Induced Drag -- 4.3.1.Parasite Drag -- 4.3.2.Monoplane Induced Drag -- 4.3.3.Biplane Induced Drag -- 4.3.4.Multiplane and Boxplane Induced Drag -- 4.4.Drag Polar Representations -- 4.4.1.Two-term Approximation -- 4.4.2.Three-term Approximation -- 4.4.3.Reynolds Number Effects -- 4.4.4.Compressibility Correction -- 4.5.Drag Prediction -- 4.5.1.Interference Drag -- 4.5.2.Roughness and Excrescences -- 4.5.3.Corrections Dependent on Operation -- 4.5.4.Estimation of Maximum Subsonic L/D -- 4.5.5.Low-Speed Configuration -- 4.6.Viscous Drag Reduction -- 4.6.1.Wetted Area -- 4.6.2.Turbulent Friction Drag -- 4.6.3.Natural Laminar Flow -- 4.6.4.Laminar Flow Control -- 4.6.5.Hybrid Laminar Flow Control -- 4.6.6.Gains, Challenges and Barriers of LFC -- 4.7.Induced Drag Reduction -- 4.7.1.Wing Span -- 4.7.2.Spanwise Camber -- 4.7.3.Non-planar Wing Systems -- Bibliography -- 5.From Tube and Wing to Flying Wing -- 5.1.The Case for Flying Wings -- 5.1.1.Northrop's All-Wing Aircraft -- 5.1.2.Flying Wing Controversy -- 5.1.3.Whither All-Wing Airliners? -- 5.1.4.Fundamental Issues -- 5.2.Allocation of Useful Volume -- 5.2.1.Integration of the Useful Load -- 5.2.2.Study Ground Rules -- 5.2.3.Volume Ratio -- 5.2.4.Zero-Lift Drag -- 5.2.5.Generalized Aerodynamic Efficiency -- 5.2.6.Partial Optima -- 5.3.Survey of Aerodynamic Efficiency -- 5.3.1.Altitude Variation -- 5.3.2.Aspect Ratio and Span -- 5.3.3.Engine-Airframe Matching -- 5.4.Survey of the Parameter ML/D -- 5.4.1.Optimum Flight Conditions -- 5.4.2.The Drag Parameter -- 5.5.Integrated Configurations Compared -- 5.5.1.Conventional Baseline -- 5.5.2.Is a Wing Alone Sufficient? -- 5.5.3.Blended Wing Body -- 5.5.4.Hybrid Flying Wing -- 5.5.5.Span Loader -- 5.6.Flying Wing Design -- 5.6.1.Hang-Ups or Showstopper? -- 5.6.2.Structural Design and Weight -- 5.6.3.The Flying Wing: Will It Fly? -- Bibliography -- 6.Clean Sheet Design -- 6.1.Dominant and Radical Configurations -- 6.1.1.Established Configurations -- 6.1.2.New Paradigms -- 6.2.Morphology of Shapes -- 6.2.1.Classification -- 6.2.2.Lifting Systems -- 6.2.3.Plan View Classification -- 6.2.4.Strut-Braced Wings -- 6.2.5.Propulsion and Concept Integration -- 6.3.Wing and Tail Configurations -- 6.3.1.Aerodynamic Limits -- 6.3.2.The Balanced Design -- 6.3.3.Evaluation -- 6.3.4.Relaxed Inherent Stability -- 6.4.Aircraft Featuring a Foreplane -- 6.4.1.Canard Configuration -- 6.4.2.Three-Surface Aircraft -- 6.5.Non-Planar Lifting Systems -- 6.5.1.Transonic Boxplane -- 6.5.2.C-Wing -- 6.6.Joined Wing Aircraft -- 6.6.1.Structural Principles and Weight -- 6.6.2.Aerodynamic Aspects -- 6.6.3.Stability and Control -- 6.6.4.Design Integration -- 6.7.Twin-Fuselage Aircraft -- 6.7.1.Design Integration -- 6.8.Hydrogen-Fuelled Commercial Transports -- 6.8.1.Properties of LH2 -- 6.8.2.Fuel System -- 6.8.3.Handling Safety, Economics and Logistics -- 6.9.Promising Concepts -- Bibliography -- 7.Aircraft Design Optimization -- 7.1.The Perfect Design: An Illusion? -- 7.2.Elements of Optimization -- 7.2.1.Design Parameters -- 7.2.2.Optimal Control and Discrete-Variable Optimization -- 7.2.3.Basic Terminology -- 7.2.4.Single-Objective Optimization -- 7.2.5.Unconstrained Optimizer -- 7.2.6.Constrained Optimizer -- 7.3.Analytical or Numerical Optimization? -- 7.3.1.Analytical Approach -- 7.3.2.Multivariate Optimization -- 7.3.3.Unconstrained Optimization -- 7.3.4.Constrained Optimization -- 7.3.5.Response Surface Approximation -- 7.3.6.Global Models -- 7.4.Large Optimization Problems -- 7.4.1.Concept Sizing and Evaluation -- 7.4.2.Multidisciplinary Optimization -- 7.4.3.System Decomposition -- 7.4.4.Multilevel Optimization -- 7.4.5.Multi-Objective Optimization -- 7.5.Practical Optimization in Conceptual Design -- 7.5.1.Arguments of the Sceptic -- 7.5.2.Problem Structure -- 7.5.3.Selecting Selection Variables -- 7.5.4.Design Sensitivity -- 7.5.5.The Objective Function -- Bibliography -- 8.Theory of Optimum Weight -- 8.1.Weight Engineering: Core of Aircraft Design -- 8.1.1.Prediction Methods -- 8.1.2.Use of Statistics -- 8.2.Design Sensitivity -- 8.2.1.Problem Structure -- 8.2.2.Selection Variables -- 8.3.Jet Transport Empty Weight -- 8.3.1.Weight Breakdown -- 8.3.2.Wing Structure (Item 10) -- 8.3.3.Fuselage Structure (Item 11) -- 8.3.4.Empennage Structure (Items 12 and 13) -- 8.3.5.Landing Gear Structure (Item 14) -- 8.3.6.Power Plant and Engine Pylons (Items 2 and 15) -- 8.3.7.Systems, Furnishings and Operational Items (Items 3, 4 and 5) -- 8.3.8.Operating Empty Weight: Example -- 8.4.Design Sensitivity of Airframe Drag -- 8.4.1.Drag Decomposition -- 8.4.2.Aerodynamic Efficiency -- 8.5.Thrust, Power Plant and Fuel Weight -- 8.5.1.Installed Thrust and Power Plant Weight -- 8.5.2.Mission Fuel -- 8.5.3.Propulsion Weight Penalty -- 8.5.4.Wing and Propulsion Weight Fraction -- 8.5.5.Optimum Weight Fractions Compared -- 8.6.Take-Off Weight, Thrust and Fuel Efficiency -- 8.6.1.Maximum Take-Off Weight -- 8.6.2.Installed Thrust and Fuel Energy Efficiency -- 8.6.3.Unconstrained Optima Compared -- 8.6.4.Range for Given MTOW -- 8.6.5.Extended Range Version -- 8.7.Summary and Reflection -- 8.7.1.Which Figure of Merit? -- 8.7.2.Conclusion -- 8.7.3.Accuracy -- Bibliography -- 9.Matching Engines and Airframe -- 9.1.Requirements and Constraints -- 9.2.Cruise-Sized Engines --

9.2.1.Installed Take-Off Thrust -- 9.2.2.The Thumbprint -- 9.3.Low Speed Requirements -- 9.3.1.Stalling Speed -- 9.3.2.Take-Off Climb -- 9.3.3.Approach and Landing Climb -- 9.3.4.Second Segment Climb Gradient -- 9.4.Schematic Take-Off Analysis -- 9.4.1.Definitions of Take-Off Field Length -- 9.4.2.Take-Off Run -- 9.4.3.Airborne Distance -- 9.4.4.Take-Off Distance -- 9.4.5.Generalized Thrust and Span Loading Constraint -- 9.4.6.Minimum Thrust for Given TOFL -- 9.5.Approach and Landing -- 9.5.1.Landing Distance Analysis -- 9.5.2.Approach Speed and Wing Loading -- 9.6.Engine Selection and Installation -- 9.6.1.Identifying the Best Match -- 9.6.2.Initial Engine Assessment -- 9.6.3.Engine Selection -- Bibliography -- 10.Elements of Aerodynamic Wing Design -- 10.1.Introduction -- 10.1.1.Problem Structure -- 10.1.2.Relation to Engine Selection -- 10.2.Planform Geometry -- 10.2.1.Wing Area and Design Lift Coefficient -- 10.2.2.Span and Aspect Ratio -- 10.3.Design Sensitivity Information -- 10.3.1.Aerodynamic Efficiency -- 10.3.2.Propulsion Weight Contribution -- 10.3.3.Wing and Tail Structure Weight -- 10.3.4.Wing Penalty Function and MTOW -- 10.4.Subsonic Aircraft Wing -- 10.4.1.Problem Structure -- 10.4.2.Unconstrained Optima -- 10.4.3.Minimum Propulsion Weight Penalty -- 10.4.4.Accuracy -- 10.5.Constrained Optima -- 10.5.1.Take-Off Field Length -- 10.5.2.Tank Volume -- 10.5.3.Wing and Tail Weight Fraction -- 10.5.4.Selection of the Design -- 10.6.Transonic Aircraft Wing -- 10.6.1.Geometry -- 10.6.2.Wing Drag in the Design Condition -- 10.6.3.Modified Wing Penalty Function -- 10.6.4.Thickness Ratio Limit -- 10.6.5.WPF Affected by Sweep Angle and Thickness Ratio -- 10.7.Lift Coefficient and Aspect Ratio -- 10.7.1.Partial Optima -- 10.7.2.Constraints -- 10.7.3.Refining the Optimization -- 10.8.Detailed Design -- 10.8.1.Taper and Lift Distribution -- 10.8.2.Camber and Twist Distribution -- 10.8.3.Forward Swept Wing (FSW) -- 10.8.4.Wing-Tip Devices -- 10.9.High Lift Devices --

License restrictions may limit access.

Computer Science and Engineering