000 06320cam a2200865 i 4500
001 ocn854285814
003 OCoLC
005 20230823095424.0
006 m o d
007 cr |||||||||||
008 130724s2013 nju ob 001 0 eng
010 _a 2013029835
040 _aDLC
_beng
_erda
_epn
_cDLC
_dYDX
_dN$T
_dYDXCP
_dEBLCP
_dIDEBK
_dE7B
_dDG1
_dCUS
_dIEEEE
_dOCLCF
_dDEBSZ
_dOCLCO
_dCOO
_dOCLCQ
_dDEBBG
019 _a870950695
_a959864594
020 _a9781118820940
_q(Adobe PDF)
020 _a1118820940
_q(Adobe PDF)
020 _a9781118821060
_q(ePub)
020 _a1118821068
_q(ePub)
020 _a9781118821183
020 _a1118821181
020 _a1306473209
020 _a9781306473200
020 _a1118168127
_q(cloth)
020 _a9781118168127
_q(cloth)
020 _z9781118168127
_q(cloth)
029 1 _aCHBIS
_b010107125
029 1 _aCHBIS
_b010441964
029 1 _aCHVBK
_b319292630
029 1 _aCHVBK
_b334088275
029 1 _aDEBSZ
_b42307346X
029 1 _aDEBSZ
_b431630593
029 1 _aDEBSZ
_b44941566X
029 1 _aNLGGC
_b373105835
029 1 _aNZ1
_b15497422
029 1 _aGBVCP
_b790212161
029 1 _aDEBBG
_bBV042989437
029 1 _aDEBBG
_bBV043396110
035 _a(OCoLC)854285814
_z(OCoLC)870950695
_z(OCoLC)959864594
042 _apcc
050 0 0 _aQC717
072 7 _aSCI
_x021000
_2bisacsh
072 7 _aSCI
_x022000
_2bisacsh
082 0 0 _a537/.2
_223
049 _aMAIN
100 1 _aLattarulo, Francesco.
245 1 0 _aFilamentary ion flow :
_btheory and experiments /
_cFrancesco Lattarulo, Vitantonio Amoruso.
264 1 _aHoboken, New Jersey :
_bIEEE Press, Wiley,
_c©2013.
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
588 0 _aPrint version record and CIP data provided by publisher.
504 _aIncludes bibliographical references and index.
505 0 _aFilamentary Ion Flow: Theory and Experiments; Contents; Preface; Acknowledgements; Introduction; Principal Symbols; 1 Fundamentals of Electrical Discharges; 1.1 Introduction; 1.2 Ionization Processes in Gases; 1.2.1 Ionization by Electron Impact; 1.2.2 Townsend First Ionization Coefficient; 1.2.3 Electron Avalanches; 1.2.4 Photoionization; 1.2.5 Other Ionization Processes; 1.3 Deionization Processes in Gases; 1.3.1 Deionization by Recombination; 1.3.2 Deionization by Attachment; 1.4 Ionization and Attachment Coefficients; 1.5 Electrical Breakdown of Gases.
505 8 _a1.5.1 Breakdown in Steady Uniform Field: Townsend's Breakdown Mechanism1.5.2 Paschen's Law; 1.6 Streamer Mechanism; 1.7 Breakdown in Nonuniform DC Field; 1.8 Other Streamer Criteria; 1.9 Corona Discharge in Air; 1.9.1 DC Corona Modes; 1.9.2 Negative Corona Modes; 1.9.3 Positive Corona Modes; 1.10 AC Corona; 1.11 Kaptzov's Hypothesis; 2 Ion Flow Models. A Review; 2.1 Introduction; 2.2 The Unipolar Space-Charge Flow Problem; 2.2.1 General Formulation; 2.2.2 Iterative Procedure; 2.2.3 The Unipolar Charge-Drift Formula; 2.3 Deutsch's Hypotheses (DH); 2.4 Some Unipolar Ion-Flow Field Problems.
505 8 _a2.4.1 Analytical Methods2.4.2 Numerical Methods; 2.5 Special Models; 2.5.1 Drift of Charged Spherical Clouds; 2.5.2 Graphical Approach; 2.6 More on DH and Concluding Remarks; Appendix 2.A: Warburg's Law (WL); Appendix 2.B: Bipolar Ionized Field; 3 Introductory Survey on Fluid Dynamics; 3.1 Introduction; 3.2 Continuum Motion of a Fluid; 3.3 Fluid Particle; 3.4 Field Quantities; 3.5 Conservation Laws in Differential Form; 3.5.1 Generalization; 3.5.2 Mass Conservation; 3.5.3 Momentum Conservation; 3.5.4 Total Kinetic Energy Conservation; 3.6 Stokesian and Newtonian Fluids.
505 8 _a3.7 The Navier-Stokes Equation3.8 Deterministic Formulation for et; 3.9 Incompressible (Isochoric) Flow; 3.9.1 Mass Conservation; 3.9.2 Subsonic Flow; 3.9.3 Momentum Conservation; 3.9.4 Total Kinetic Energy Conservation; 3.10 Incompressible and Irrotational Flows; 3.11 Describing the Velocity Field; 3.11.1 Decomposition; 3.11.2 The v-Field of Incompressible and Irrotational Flows; 3.11.3 Some Practical Remarks and Anticipations; 3.12 Variational Interpretation in Short; 3.12.1 Bernoulli's Equation for Incompressible and Irrotational Flows; 3.12.2 Lagrange's Function; Appendix 3.A.
505 8 _a4 Electrohydrodynamics of Unipolar Ion Flows4.1 Introduction; 4.2 Reduced Mass-Charge; 4.3 Unified Governing Laws; 4.3.1 Mass-Charge Conservation Law; 4.3.2 Fluid Reaction to Excitation Electromagnetic Fields; 4.3.3 Invalid Application of Gauss's Law: A Pertaining Example; 4.3.4 Laplacian Field and Boundary Conditions; 4.3.5 Vanishing Body Force of Electrical Nature; 4.3.6 Unified Momentum and Energy Conservation Law; 4.3.7 Mobility in the Context of a Coupled Model; 4.3.8 Some Remarks on the Deutsch Hypothesis (DH); 4.4 Discontinuous Ion-Flow Parameters; 4.4.1 Multichanneled Structure.
520 _aPresents all-new laboratory-tested theory for calculating more accurate ionized electric fields to aid in designing high-voltage devices and its components Understanding and accurately calculating corona originated electric fields are important issues for scientists who are involved in electromagnetic and electrostatic studies. High-voltage dc lines and equipment, in particular, can generate ion flows that can give rise to environmental inconveniences. Filamentary Ion Flow: Theory and Experiments provides interdisciplinary theoretical arguments to attain a final.
650 0 _aIon flow dynamics.
650 0 _aElectrostatics.
650 4 _aElectrostatics
_xTechnology.
650 4 _aElectrostatics.
650 4 _aIon flow dynamics.
650 7 _aSCIENCE
_xPhysics
_xElectricity.
_2bisacsh
650 7 _aSCIENCE
_xPhysics
_xElectromagnetism.
_2bisacsh
650 7 _aElectrostatics.
_2fast
_0(OCoLC)fst00907767
650 7 _aIon flow dynamics.
_2fast
_0(OCoLC)fst00978588
655 4 _aElectronic books.
700 1 _aAmoruso, Vitantonio,
_d1955-
776 0 8 _iPrint version:
_aLattarulo, Francesco.
_tFilamentary ion flow.
_dHoboken, New Jersey : John Wiley & Sons, Inc., ©2013
_z9781118168127
_w(DLC) 2013029213
856 4 0 _uhttp://dx.doi.org/10.1002/9781118821183
_zWiley Online Library
994 _a92
_bDG1
999 _c20732
_d20691
526 _bps